
HPCToolkit • DynInst
Open Source Tools From CScADS

hpctoolkit.org

Nathan Tallent

DOE Workshop for Industry Software Developers

John Mellor-Crummey Barton Miller

Center for Scalable Application Development Software

cscads.rice.edu

dyninst.org

March 31, 2011

Thursday, March 31, 2011

http://hpctoolkit.org
http://hpctoolkit.org
file://localhost/Users/tallent/Documents/UW-Madison_logo.svg
file://localhost/Users/tallent/Documents/UW-Madison_logo.svg
http://hpctoolkit.org
http://hpctoolkit.org

2

Why Tools? “Why doesn’t my app work?”
• Complex architectures are hard to program

— multicore/manycore multi-socket nodes
• hardware threading, out-of-order pipeline, SIMD units

— multi-level memory hierarchies
• non-uniform latency memory and cache accesses

— heterogeneity: SIMD, GPUs
— massive scale: 200K cores

• Complex software is hard to monitor and analyze
— parallelism: threads, locks, synchronization, nested parallelism
— modularity: object-orientation, generics, meta-programming
— layers: composing libraries, multilingual apps, coupled apps
— compilers: transform code; may not achieve high performance

• How do I find bottlenecks? How do I find errors?
— tools must not only work, but deliver actionable insight

• insight that justifies specific actions

Thursday, March 31, 2011

Pinpoint and diagnose bottlenecks in parallel codes

The Role of Performance Tools

• Are there parallel scaling bottlenecks at any level?

• Are applications making the most of node performance?

• What are the rate limiting factors for an application?
— mismatch between application needs and system capabilities?

• memory bandwidth or latency?
• lock contention?
• communication bandwidth or latency?

• What is the expected benefit of fixing bottlenecks?

• What type and level of effort is necessary?
— tune existing implementation
— overhaul implementation to better match architecture capabilities
— new algorithms

3
Thursday, March 31, 2011

4

Performance Tools Challenges
• Deliver actionable insight

— pinpoint and explain problems in terms of source code
— pinpoint hot spots inefficiency

• Combine accurate & precise measurement
— attribute metrics to the statement, loop and data-object level
— avoid high overheads
— avoid systematic measurement error

• Measure configuration of interest, not a mock up
— large multi-lingual, fully optimized, parallel, production code
— binary-only libraries, partially stripped
— dynamic loading or static binaries

• Scale within and across nodes
— multithreaded codes
— large-scale parallelism (200K cores)

Thursday, March 31, 2011

HPCToolkit: Detailed Performance Metrics

1-2% overhead

costs for
• inlined procedures
• loops
• function calls in full context

Thursday, March 31, 2011

HPCToolkit Capabilities at a Glance

6

Attribute Costs to Code

Analyze Behavior
over Time

Assess Imbalance
and Variability

Associate Costs with Data

Shift Blame from
Symptoms to Causes

Pinpoint & Quantify
Scaling Bottlenecks

hpctoolkit.org
Thursday, March 31, 2011

http://hpctoolkit.org
http://hpctoolkit.org

 Precise measurement and attribution using on-the-fly
binary analysis - Best paper PLDI09

 Novel techniques to pinpoint & quantify (CCPE10)
- scalability losses within & across nodes (ICS07,SC09)
- inefficient multithreading (PPoPP09, IEEE Comp. 09)
- lock contention (PPoPP10)
- load imbalance (SC10)
- data centric issues (CGO11)

 Insight into transient behavior with sampling (ICS11)

 HPCToolkit released as supported product on Bull and
SciCortex systems; under evaluation by IBM

“Performance Tools for Leadership Computing” - John Mellor-Crummey, Rice University

ImpactObjec+ves	

 Accurately measure performance of parallel codes
on leadership computing systems

 Pinpoint and quantify losses both within and across
nodes in scalable parallel programs

 Provide actionable insight by tying losses and
opportunities to both code and data

Used HPCToolkit to help DOE science teams
understand and fix code performance problems
 Lock contention in MADNESS
 Data locality losses in S3D
 AMR scaling bottlenecks in FLASH
 Load imbalance in PFlotran simulations

User	 interfaces	 ,e	 costs	 to	 code	 and	 display	 behavior	 over	 ,me Accomplishments

ASCR SciDAC-2 Computer Science Highlight

execu,on	 disturbed	 by	
asynchronous	 communica,on	

Thursday, March 31, 2011

HPCToolkit and Industry

8

• Bull
— ships HPCToolkit with systems

• SiCortex (low power clusters)
— shipped HPCToolkit with systems

• Samara Technology Group
— packages HPCToolkit as a key

tool used by its consultants

• Total R&D (energy)
— used HPCToolkit extensively in

performance studies of seismic code

• WesternGeco (energy)
— studied performance of seismic code

• IBM
— evaluating for POWER7 systems

Thursday, March 31, 2011

HPCToolkit at a Glance

9

app.
source

optimized
binary

compile & link
(full optimization) call path

profile

profile
execution
[hpcrun/
hpclink]

binary
analysis

[hpcstruct]

analysis &
attribution to source
[hpcprof/mpi]

databasepresentation
[hpcviewer]

program
structure

Thursday, March 31, 2011

Dyninst: Analyze, instrument, and control binary
programs:

o Instrumentation: add tracing, checking, sandboxing,
monitoring, etc. to your already-compiled code

 Binary rewriting: patch an a.out/.exe/.so/.dll to add or
modify code.

 Dynamic instrumentation: add or remove instrumentation
code from a running program.

o Analysis: Binary code parsing, Control- and data-flow
analysis, symbol table access, instruction disassembly.

o Program Control: Create/attach to a process, start, stop,
event detection, read, and write process address space.

2The Deconstruction of Dyninst
Thursday, March 31, 2011

Guiding Principles
o Work on program binaries:

o don’t need source code, even for proprietary libraries.
o functions even if code is stripped (no symbol tables)

o Clean Abstractions
o Hide complexity
o Necessary for portability
o Quickly build new tools

o Portability
o Same interface across multiple systems
o System differences not visible

3The Deconstruction of Dyninst
Thursday, March 31, 2011

The Toolkits
DyninstAPI: overall package for binary program analysis,

instrumentation, and control (x86 32 and 64 bit, Power
32 and 64 bit, IBM BlueGene, Cray XT)

SymtabAPI: read, understand, and update program
symbol tables (PE/PDB, ELF/DWARF)

StackwalkerAPI: runtime walk of process stacks,
handling optimized code frame and exceptions.

ProcControlAPI: create/attach to process, monitor state
change events, control process, and read/write address
space (Linux, Windows, Cray XT, IBM BG)

4The Deconstruction of Dyninst
Thursday, March 31, 2011

The Toolkits

InstructionAPI: parse a machine instruction into fields,
providing a machine-independent representation.

ParseAPI: control- and data-flow analysis of the binary
program, even in the face of stripped code.

DataflowAPI: data dependence analysis of the binary
code, including forward and backwards slicing.

DynC API: generate program instrumentation code
sequences from C code snippets.

5The Deconstruction of Dyninst

• DynInst components are shipped by Cray (in ATP)
• DynInst has been shipped by IBM (in DPCL)
• SymTabAPI used by HPCToolkit

Thursday, March 31, 2011

CScADS Tools Technology Highlights
• HPCToolkit (BSD License)

— hpcrun call path profiler
— libmonitor library for process/thread monitoring
— hpcstruct binary analysis to recover program structure
— hpcprof analysis tool
— hpcviewer call path profile presentation tool
— hpctraceviewer call path trace presentation tool

• DynInst (LGPL License)
— dynamic binary instrumentation
— process control
— symbol table parsing and generation
— instruction encoding and decoding
— binary control-flow and data-flow analysis
— first and third party stack unwinding

14

hpctoolkit.org

dyninst.org

cscads.rice.edu
Thursday, March 31, 2011

http://hpctoolkit.org
http://hpctoolkit.org
http://hpctoolkit.org
http://hpctoolkit.org
http://hpctoolkit.org
http://hpctoolkit.org

